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Abstract:  This present study, the residual service time on the M/G/1 queueing system where the arrival process is Poisson 

with rate 𝜆 and service times of customers are independent and identically distributed and obey an unspecified 

arbitrary or general distribution function is analysed. Our analysis is based on the fact that, an arrival is more likely 

to occur during a large service time than a small service interval since the service is a random variable having a 

general distribution. Using the imbedded Markov chain technique, the stochastic transition probability matrix 𝑓𝑖𝑗  

and average residual service time in [0, t] are obtained by considered the area under the curve 𝑅(𝑡) divided by 𝑡. 
Finally, we obtained the probability distribution function of the residual service time conditioned on the server 

being busy and expected residual service time. The numerical illustration is considered to show its applications in 

solving real life problem on 𝑀/𝐷/1queue for which 𝜆 =
1

2
 𝑎𝑛𝑑   𝜇 = 1. The elements of the transition probability 

matrix are obtained as 𝛼1 =  0.303265; 𝛼2 =  0.075816;𝛼3 =  0.075816; 𝛼4 =  0.075816; 𝛼5 =
 0.075816;𝛼6 =  0.075816; 𝛼7 =  0.075816. Also, by the use of the recursive procedure and setting𝜌0 = 0.5, We 

obtain the following𝑃1 = 0.32436: ∑ 𝑝𝑖 = 0.824361
1
𝑖=0 , 𝑃2 = 0.1226: ∑ 𝑝𝑖 = 0.94696

2
𝑖=0 , 𝑃3 = 0.037788: 

∑ 𝑝𝑖 = 0.98475
3
𝑖=0 , 𝑃4 = 0.01091: ∑ 𝑝𝑖 = 0.995658

4
𝑖=0 , 𝑃5 = 0.003107: ∑ 𝑝𝑖 = 0.998764

5
𝑖=0 ,  𝑃6 = 0.000884: 

∑ 𝑝𝑖 = 0.999648
6
𝑖=0 . 

Keywords:  General distribution, performance measure, Pollaczek-Khintchine equation residual service 
 

 

Introduction 

The M/G/1 queue is a single-server queue of Poisson arrival, 

the service times of customers are independent and identically 

distributed and obey an unspecified arbitrary or general 

distribution function. In particular, the remaining service time 

may no longer be independent of the service already received. 

When a customer arrives at an M/G/1 queue and finds at least 

one customer already present, at that arrival instant a customer 

is in the process of being served. In this study our concern is 

with the time that remains until the completion of that service, 

the so called residual (service) time. In the more general 

context of an arbitrary stochastic process, the terms residual 

lifetime and forward recurrence time are also employed. The 

time that has elapsed from the moment service began until the 

current time is called the backward recurrence time. If the 

system is empty; then ℜ = 0. The mean residual service time 

is then obtained from the Pollaczek-Khintchinemean value 

formulae in the context of a first-come, first-served scheduling 

policy. Stochastic application of queueing theory which 

involves various probability distributions and its application is 

discussed in Law and Kelton (2000) and new Convergence 

Results on Functional Techniques for the Numerical Solution 

of M/G/1 Type Markov Chains is established. Agboola (2007) 

studied a single server queue where the inter-arrival time is 

Markovian time and service time is general. This model 

generalizes the well known M/G/1 queue. The waiting time 

process is directly analysed by solving the lindley’s equation 

using transform method.  

The Laplace Stieltjes transforms (LST) of the steady state 

waiting time and queue length distribution are both derived, 

and used to obtain recursive equations for the calculation of 

moments. k - server queue is Discussed in Agboola (2010) 

where the inter arrival time is Markovian and service time is 

Markovian, General and Erlang distributed. This model 

generalizes the M/M/K, M/G/K and M/Er/K queues. The 

departure distribution is directly analysed by using probability 

generating function to derive the service time, waiting time 

and sojourn time distribution under single server with general 

service time. The recursive equation is then used to obtain 

blocking probability for the Markov inter arrival with K –

server under general service time.  G/M/1 and G/M/K are 

discussed in William (2009) where the service process has 

exponential distribution with mean service time 
1

𝜇
.  i.e.𝐵(𝑥) =

1 − exp (−𝜇𝑥),  𝑥 ≥ 0, while the arrival process is general 

with mean inter arrival time equal to 
1

𝜆
.  Customers arrive 

individually and their inter arrival times are independent and 

identically distributed. To represent this system by a 

Markovian, it is necessary to keep track of time that passes 

between arrivals, since the distribution of inter arrival times 

does not in general possess the memoryless property of the 

exponential. As was the case for the M/G/Q queue, a two – 

component state descriptor may be used; the first to indicate 

the number of customers present and the second to indicate 

the elapsed time since the previous arrival. In this way, the 

G/M/1 queue can be solved using the method of 

supplementary variables. It is also possible to define a Markov 

chain embedded within the G/M/1 queue. The embedded time 

instants are precisely the instants of customer arrivals, since 

the elapsed inter arrival time at these moments is known as 

zero. This allows us to form a transition probability matrix 

and to compute the distribution of customers as seen by an 

arriving customer.  

Charan (2012) investigated the single server queueing system 

where in the arrival of the units follow a Poisson process with 

varying arrival rates in different states. The server may take a 

vacation of a fixed duration or may continue to be available in 

the system for next service. Probability generating function of 

the units present in the system and various performance 

indices such as expected number of units in the queue and in 

the system, average waiting time, etc. are obtained. Michiel 

(2017) analysed a non-classical discrete time queueing model 

which is based on complex contour integration to obtain the 

probability generating functions, the mean values and the tail 

probabilities of the customer delay and the system steady state 

with numerical example illustration. Charan (2019) 

considered a single server queueing system with batch arrival. 

The supplementary variable approach with probability 

generating function is applied to analyse the system to find the 

system performance quantity and numerical illustration is 

considered to obtain the system state probabilities and 

queueing reliability indices. 

 

 

Supported by

 
 

http://www.ftstjournal.com/
mailto:larrysoa7519@yahoo.com


System State Probabilities and Queueing Reliability Indices Using M/G/1 Queueing Model 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; December, 2019: Vol. 4 No. 3 pp. 740 – 743  

 
741 741 

Materials and Methods 

The M/G/1 queue is a single-server queue, illustrated 

graphically in Fig. 1. 

 
Fig. 1: The M/G/1 queue 

 

The arrival process is Poisson with rate λ, while the service 

times of customers are independent and identically distributed 

and obey an unspecified arbitrary or general distribution 

function. In particular, the remaining service time may no 

longer be independent of the service already received. The 

mean service rate is denoted by 𝜇and the service time 

distribution function is denoted as 𝐵(𝑥)  =  𝑃𝑟𝑜𝑏[𝑆 ≤ 𝑥], 
where 𝑆 is the service time random variable with density 

function denoted 𝑏(𝑥), given by; 

𝑏(𝑥)𝑑𝑥 = 𝑃𝑟𝑜𝑏[𝑥 < 𝑠 ≤ 𝑥 + 𝑑𝑥]. 
The arrival process distribution function is; 

𝐴(𝑡) = 1 − exp(−𝜇𝑡) ,    𝑡 ≥ 0. 

The service or scheduling discipline is first come first serve 

(FCFS). In 𝑀/𝑀/1 queue, where both the inter-arrival time 

and service time distributions are Poisson, all that required to 

summarised its entire past history is a specification of the 

number of customers present, 𝑁(𝑡), and, in this case, the 

stochastic process 𝑁(𝑡) ≥ 0 is a Markov process. In 𝑀/𝐺/1 

queue, the stochastic process 𝑁(𝑡) ≥ 0 is not a Markov 

process since, when 𝑁(𝑡) ≥ 1, a customer is in service and 

the time already spent by that customer in service must be 

taken into account as a result of the fact that the service 

process need not possess the memoryless property of the 

exponential distribution. 

Let 𝐶(𝑥) be the conditional probability that the service time 

finishes before (𝑥 +  𝑑𝑥) 
Knowing that its duration is greater than 𝑥; therefore, 

𝐶(𝑥) = 𝑃𝑟𝑜𝑏[𝑆 ≤ 𝑥 + 𝑑𝑥|𝑆 > 𝑥] =
𝑃𝑟𝑜𝑏[𝑆 ≤ 𝑥 + 𝑑𝑥]

𝑃𝑟𝑜𝑏[𝑆 > 𝑥]
=
𝑏(𝑥)𝑑𝑥

1 − 𝐵(𝑥)
 

Generally 𝐶(𝑥) depend on 𝑥, however 𝐵(𝑥) is an exponential 

distribution such that 

𝐵(𝑥) = 1 − exp (−𝜇𝑥), 𝑏(𝑥) = 𝜇exp (−𝜇𝑥) 
and 

𝐶(𝑥) =
𝜇exp (−𝜇𝑥)

1 − 1 + exp (−𝜇𝑥)
= 𝜇𝑑𝑥 

which is independent of 𝑥. In this particular case; 

if we start to observe the service in progress at an arbitrary 

time 𝑥, the probability thatthe service completes on the 

interval (𝑥, 𝑥 + 𝑑𝑥] does not depend on 𝑥, the duration 

ofservice already received by the customer. In other words, 

the probability that a transition will occur depends on its past 

history, and therefore the process is non-Markovian. This is 

implying that, if at some time 𝑡 we want to summarise the 

complete relevant past history of an 𝑀/𝐺/1 queue, we must 

specify both 

(a) 𝑁(𝑡), the number of customers present at time 𝑡, and 

(b) 𝑆0(𝑡), the service time already spent by the customer in 

service at time 𝑡. 
Since 𝑁(𝑡) is not Markovian [𝑁0(𝑡), 𝑆0(𝑡)] is a Markov 

process and it provides all the history necessary for describing 

the future evolution of an M/G/1 queue. The component𝑆0(𝑡) 
is called a supplimentary variable and the approach of using 

this state descriptionto solve the M/G/1 queues is called the 

method of supplementary variable, which involves working 

with two components, the first discrete and the second 

continuous but rather we shall seek an alternative solution 

based on a single discrete component known as the embedded 

Markov chain approach. 

Results and Discussion 

In the embedded Markov chain approach, we look for a 

Markov chain within (i.e., at certain instants within) the 

stochastic process [𝑁0(𝑡), 𝑆0(𝑡)] and solve for the 

distributionof customers at these times. One convinient set of 

time instants is the set of departure instants. These are the 

times at which a customer is observed to terminate service and 

leave the queueing system. The two dimensional state 

description [𝑁0(𝑡), 𝑆0(𝑡)] can be replace with one 

dimensional description 𝑁𝑘, where 𝑁𝑘 denotes the number of 

customersleft behind by the 𝑘𝑡ℎ departing customer.Let 𝐴𝑘be 

the random variable that denotes the number of customers that 

arrive during the service time of the 𝑘𝑡ℎ customer. The 

relationship among the number of customersleft behind by the 

(𝑘 + 1)𝑡ℎ customer in terms of the number left behind by its 

predecessor and 

𝐴𝑘+1for𝑘 > 0 is𝑁𝑘+1 = 𝑁𝑘 − 1 + 𝐴𝑘+1, 

Since there are 𝑁𝑘 present in the system when the (𝑘 + 1)𝑡ℎ 

customer enters service, andadditional 𝐴𝑘+1 arrive while this 

customer is being served, and the number in the systemis 

reduced by 1 when this customer finally exists. 

Similarly if 𝑁𝑘 = 0, we have; 

𝑁𝑘+1 = 𝐴𝑘+1 

We may combine these into a single equation with the use of 

the function 𝛿(𝑁𝑘)  defined as; 

𝛿(𝑁𝑘) = {
1 ;       𝑁𝑘 > 0      
0 ;       𝑁𝑘 = 0  

 

Since 

𝑁𝑘+1 = 𝑁𝑘 − 1 + 𝐴𝑘+1, 𝑁𝑘 > 0 

𝑁𝑘+1 = 𝐴𝑘+1,      𝑁𝑘 = 0. 

We have 

𝑁𝑘+1 = 𝑁𝑘 − 𝛿(𝑁𝑘) + 𝐴 
The stochastic transition probability matrix for the embedded 

Markov chain, 

𝑁𝑘;   𝑘 = 1,2,⋯ 

The (𝑖𝑗)𝑡ℎ  element of this matrix is given by 𝛿(𝑁𝑘) =
𝑃𝑟𝑜𝑏[𝑁𝑘+1 = 𝑗|𝑁𝑘 = 𝑖]. 
The single-step transition probability matrix is given by, 

𝐹 =

(

  
 

𝛼0 𝛼1 𝛼2𝛼3𝛼4 …
𝛼0 𝛼1  𝛼2𝛼3 𝛼4 …
0
0
⋮
0

𝛼0
0
⋮
0

𝛼1 
𝛼0
⋮
0

𝛼1 
𝛼1 
⋮
0

𝛼3  
𝛼2 
⋮
0

…
…
⋱
0)

  
 

 

Where 𝛼𝑖 is the probability that 𝑖 arrivals occur during an 

arbitrary service. 

 

Given that the random variable 𝐴𝑘 are independent and 

identically distributed, and assuming that the 𝑘𝑡ℎ departing 

customer leaves at least one customer behind 

[𝑁𝑘 = 𝑖 > 0], 
we have 

𝑃𝑟𝑜𝑏[𝑁𝑘+1 = 𝑗|𝑁𝑘 = 𝑖] = 𝑓𝑖𝑗(𝑘) = 𝛼𝑗−𝑖+1   ∀  𝑗

= 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2,⋯ 

In the case of the the 𝑘𝑡ℎ departure leaving behind an empty 

system [𝑁𝑘 = 𝑖 = 0], we 

have 

𝑃𝑟𝑜𝑏[𝑁𝑘+1 = 𝑗|𝑁𝑘 = 0] = 𝑓𝑖𝑗(𝑘) = 𝛼𝑗   ∀  𝑗 = 0, 1, 2,⋯ 

Thus the transition probability 𝑓𝑖𝑗(𝑘) do not depend on 𝑘, 

which means that the Markov 

Chain [𝑁𝑘;  𝑘 = 1, 2,3,⋯ ] is homogeneous. 

 

The 𝑴/𝑮/𝟏 residual service time 

When a customer arrives at an M/G/1 queue and finds at least 

one customer already present, at that arrival instant, a 

customer is in the process of being served to obtain the time 

that remain until the completion of that service. In the M/M/1 

queue, the mean residual service time given that we have an 

http://www.ftstjournal.com/
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expression for the expected time an arriving customer must 

wait until its service begins, 𝑊𝑞, and another expression for 

the expected number of customers waiting in the queue, 𝐿𝑞, 

i.e. 

𝑊𝑞 =
𝜆𝐸[𝑆2]

2(1 − 𝜌)
 

and 

𝐿𝑞 =
𝜆2𝐸[𝑆2]

2(1 − 𝜌)
 

The mean residual time i 

𝐸[ℜ] = 𝑊𝑞 −
1

𝜇
𝐿𝑞 

𝐸[ℜ] =
𝜆𝐸[𝑆2]

2(1 − 𝜌)
−
𝜆2𝐸[𝑆2]

2𝜇(1 − 𝜌)
 

𝐸[ℜ] =
𝜆𝐸[𝑆2]

2(1 − 𝜌)
(1 − 𝜌) =

𝜆𝐸[𝑆2]

2
 

This expression provides the expected residual service time as 

seen by an arriving customer and this is also the expected 

residual service time as seen by a random observer. Since the 

arrival process is Poisson. The relationship between 𝐸[ℜ]and 

𝑊𝑞 is given by; 

𝐸[ℜ] = (1 − 𝜌)𝑊𝑞 , 

Where (1 − 𝜌) is the probability that the server is idle. 

 

Considering the Fig. 2 below; 

 
Fig. 2: Residual service time in M/G/1 queue 

 

Immediately prior to the initiation of service for a customer, 

residual time, ℜ(𝑡) equal zero. The moment the server begins 

to serve a customer, the residual service time mustbe equal to 

the total service requirement of that customer, i.e., 𝑆𝑖 for 

customer 𝑖. Astime passes, the server reduces this service 

requirement at the rate of one unit per time, hence the slope of 

-1 from the moment service begins until the service 

requirement of the customer has been completely satisfied, at 

which the remaining service time is equal to zero. If at this 

instant another customer is waiting in the queue, the residual 

service time jumps an amount equal to the service required by 

that customer. Otherwise, the server becomes idle and remains 

so until a customer arrives to the queueing system. Let us 

assume that at time 𝑡 =  0 the system is empty and let us 

choose a time 𝑡 atwhich the system is once again empty. If 

λ < 𝜇, we are guaranteed that such times occur infinitely 

often. Let𝑀(𝑡) be the number of customers served by time 𝑡. 
The averageresidual service time in [0, 𝑡] is the area under the 

curve ℜ(𝑡) divided by 𝑡 and since thearea of each right angle 

triangle with base and height equal to 𝑆𝑡is
𝑆𝑡
2

2
, we find; 

𝐸[ℜ] =
1

𝑡
∫ℜ(𝑡)𝑑𝑡 =

𝑡

0

1

𝑡
∑

𝑆𝑡
2

2

𝑀(𝑡)

𝑡=1

 

=
1

2
×
𝑀(𝑡)

𝑡
× ∑

𝑆𝑡
2

𝑀(𝑡)

𝑀(𝑡)

𝑡=1

 

As 𝑡 → ∞ 

𝐸[ℜ] =
1

𝑡
∫ℜ(𝑡)𝑑𝑡 =

𝑡

0

1

2
× lim
𝑡→∞

𝑀(𝑡)

𝑡
× lim
𝑡→∞

∑
𝑆𝑡
2

𝑀(𝑡)

𝑀(𝑡)

𝑡=1

 

𝐸[ℜ] =
1

2
λE[S2] 

Where, 

λ = lim
𝑡→∞

𝑀(𝑡)

𝑡
  and E[S2] = lim

𝑡→∞
∑

𝑆𝑡
2

𝑀(𝑡)

𝑀(𝑡)
𝑡=1  

λ is set equal to the mean output rate since at equilibrium, the 

arrival rate is equal to the departure rate. 

Let 𝑥 be a random variable that denotes the service time of the 

customer in service when an arrival occurs. The service 

received by some customers will be long while that received 

by other customers will be short. Therefore, it is apparent that 

an arrival is more likely to occur during a large service time 

than in a small service interval. 

Therefore, 

𝑓𝑥(𝑋) = 𝑃𝑟𝑜𝑏[𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥] = 𝛼(𝑥)𝑏(𝑥)𝑑𝑥 

Where the role of  𝛼 is to ensure that this is a proper density 

function, i.e. 

∫ 𝛼(𝑥)𝑏(𝑥)𝑑𝑥
∞

0
= 1. 

Since 

𝐸[𝑆] = ∫ 𝑥𝑏(𝑥)𝑑𝑥
∞

0
, 

It follows that 

𝛼 =
1

𝐸[𝑆]
 

And 

𝑓𝑥(𝑋)𝑑𝑥 =
𝑥𝑏(𝑥)

𝐸[𝑆]
 

Since arrivals are Poisson, hence random, an arrival is 

uniformly distributed over the service interval (0, 𝑥). This 

means the probability that the remaining service time is 

lessthan or equal to 𝑡,  0 ≤ 𝑡 ≤ 𝑥, given that the arrival occurs 

in a service period of length𝑥, is equal to 
𝑡

𝑥
. i.e., 

𝑃𝑟𝑜𝑏[ℜ𝑏 ≤ 𝑡|𝑋 = 𝑥] =
𝑡

𝑥
 

Therefore, 

𝑃𝑟𝑜𝑏[𝑡 ≤ ℜ𝑏 ≤ 𝑡 + 𝑑𝑡|𝑋 = 𝑥] =
𝑑𝑡

𝑥
,    𝑡 ≤ 𝑥 

Removing the condition, by integrating over all possible x, 

allows us to obtain probability distribution function for the 

residual service time conditioned on the server being busy. 

We have, 

𝑃𝑟𝑜𝑏[𝑡 ≤ ℜ𝑏 ≤ 𝑡 + 𝑑𝑡] = 𝑓ℜ𝑏(𝑡)𝑑𝑡 

= ∫
𝑑𝑡

𝑥
𝑑𝑥

∞

𝑡

= ∫
𝑏(𝑥)

𝐸[𝑆]
𝑑𝑥𝑑𝑡

∞

𝑡

 

=
1 − 𝐵(𝑡)

𝐸[𝑆]
𝑑𝑡 

And hence 

𝑓ℜ𝑏(𝑡) =
1 − 𝐵(𝑡)

𝐸[𝑆]
 

The mean residual service time is found from 

𝐸[ℜ𝑏] = ∫ 𝑓ℜ𝑏(𝑡)𝑑𝑡 =

∞

𝑡

1

𝐸[𝑆]
∫ 𝑡(1 − 𝐵(𝑡))𝑑𝑡

∞

𝑡

 

Taking 

𝑢 = 1 − 𝐵(𝑡);    𝑑𝑢 = −𝐵(𝑡)𝑑𝑡. 𝑑𝑣 = 𝑡𝑑𝑡; 𝑣 =
𝑡2

2
 

 

Using integration by part method 

𝐸[ℜ𝑏] =
1

𝐸[𝑆]
[1 − 𝐵(𝑡)] |

𝑡2

2
|
0

∞

+ ∫
𝑡2

2
𝐵(𝑡)𝑑𝑡

∞

𝑡

 

𝐸[ℜ𝑏] =
1

2𝐸[𝑆]
∫ 𝑡2𝐵(𝑡)𝑑𝑡 =

∞

𝑡

𝜇𝐸[𝑆2]

2
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The higher moment of residual time is given by 

𝐸[ℜ𝑏
𝑘−1] =

𝜇𝐸[𝑆𝑘]

2
,     𝑘 = 2, 3,⋯ 

Also,  𝐸[ℜ] = 𝜌𝐸[ℜ𝑏], where 𝜌 = 1 − 𝜌0 is the probability 

that the server is busy. 

Given that the first and second moments of a random variable 

having an Erlang - 𝑟- distribution (𝑟 exponentially phases 

each with parameter 𝑟𝜇) are 𝐸[𝑆] =
1

𝜇
and𝐸[𝑆2] =

𝑟(𝑟+1)

(𝑟𝜇)2
  

respectively 

The expected residual time in an 𝑀/𝐸𝑟/1 queue is 

𝐸[𝑅] =

(1 +
1
𝑟
)
𝜇
⁄

2
𝜇⁄

=
(1 +

1
𝑟
)

2𝜇
 

As 𝑟 → ∞,  

𝐸[ℜ𝑏] =
1

2𝜇
=
𝐸[𝑆]

2
 

which is the expected residual service time in an𝑀/𝐺/1queue 

when the process is deterministic. 

Consider an 𝑀/𝐷/1queue for which 𝜆 =
1

2
 𝑎𝑛𝑑   𝜇 = 1. The 

element of the transition probability matrix can be found from 

𝛼𝑖 =
(0.5)𝑖

𝑖 !
exp (−0.5) 

 

This yields the following results: 

𝛼0 =  0.606531; 𝛼1 =  0.303265; 𝛼2 =  0.075816;𝛼3 =
 0.075816; 𝛼4 =  0.075816; 𝛼5 =  0.075816;𝛼6 =
 0.075816; 𝛼7 =  0.075816 

Using the recursive procedure and beginning with 𝜌0 = 0.5, 

We obtain the following (Agboola, 2011): 

𝑃1 = 0.32436:∑ 𝑝𝑖 = 0.824361
1
𝑖=0  

𝑃2 = 0.1226: ∑ 𝑝𝑖 = 0.94696
2
𝑖=0  

𝑃3 = 0.037788: ∑ 𝑝𝑖 = 0.98475
3
𝑖=0  

𝑃4 = 0.01091: ∑ 𝑝𝑖 = 0.995658
4
𝑖=0  

𝑃5 = 0.003107: ∑ 𝑝𝑖 = 0.998764
5
𝑖=0  

𝑃6 = 0.000884:  ∑ 𝑝𝑖 = 0.999648
6
𝑖=0    

 

Conclusion 

In this study, we obtained the probability distribution function 

of the residual service time conditioned on the server being 

busy and expected residual service time. We as well 

demonstrate that, as 𝑟tends to infinity, the  first and second 

moments of random variable having Erlang - 𝑟 distribution is 

the expected residual service time in an 𝑀/𝐺/1 queuewhen 

the service process is deterministic, examples and results were 

given to show itsapplications in solving real life problem on 

𝑀/𝐷/1queue for which 𝜆 =
1

2
 𝑎𝑛𝑑   𝜇 = 1. The element of 

the transition probability matrix can be are obtained as 𝛼1 =
 0.303265; 𝛼2 =  0.075816;𝛼3 =  0.075816; 𝛼4 =
 0.075816; 𝛼5 =  0.075816;𝛼6 =  0.075816; 𝛼7 =
 0.075816 and by using the recursive procedure and 

beginning with 𝜌0 = 0.5, We obtain the following 𝑃1 =

0.32436: ∑ 𝑝𝑖 = 0.824361
1
𝑖=0 , 𝑃2 = 0.1226: ∑ 𝑝𝑖 =

2
𝑖=0

0.94696, 𝑃3 = 0.037788: ∑ 𝑝𝑖 = 0.98475
3
𝑖=0 , 𝑃4 =

0.01091: ∑ 𝑝𝑖 = 0.995658
4
𝑖=0 , 𝑃5 = 0.003107: ∑ 𝑝𝑖 =

5
𝑖=0

0.998764,  𝑃6 = 0.000884: ∑ 𝑝𝑖 = 0.999648
6
𝑖=0 . 

 

Nomenclature 

𝑋: Service time random variable when arrival occurs 

𝑥:  Duration of service time random variable X 

𝜇: Service rate 

ℜ:  Residual service time random variable 

𝑓ℜ(𝑥): Density function of Residual service time 

λ: Arrival rate 

R: Response time 

𝑓ℜ(𝑥): Density function of random variable X 

𝑏(𝑥): Density function of service time 

𝐵(𝑥): Service time distribution fuction 

𝑏(𝑥)𝑑𝑥: Frequency of occurrences of service interval having 

length x 

𝑀(𝑥): Number of customers served by time t 

𝑊𝑞: Expected time arriving customer must wait until its 

service begins 

𝐿𝑞 : Expected number of customers waiting in the queue 

𝐸[ℜ] : Mean residual service time 

𝜌 : Workload intensity 

𝑁(𝑡) : Then number of customers present at time 𝑡 
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